Recently published - More

Abstract

Peroxisomes perform essential functions in lipid metabolism, including fatty acid oxidation and plasmalogen synthesis. Here, we describe a role for peroxisomal lipid metabolism in mitochondrial dynamics in brown and beige adipocytes. Adipose tissue peroxisomal biogenesis was induced in response to cold exposure through activation of the thermogenic coregulator PRDM16. Adipose-specific knockout of the peroxisomal biogenesis factor Pex16 (Pex16-AKO) in mice impaired cold tolerance, decreased energy expenditure, and increased diet-induced obesity. Pex16 deficiency blocked cold-induced mitochondrial fission, decreased mitochondrial copy number, and caused mitochondrial dysfunction. Adipose-specific knockout of the peroxisomal β-oxidation enzyme acyl-CoA oxidase 1 (Acox1-AKO) was not sufficient to affect adiposity, thermogenesis, or mitochondrial copy number, but knockdown of the plasmalogen synthetic enzyme glyceronephosphate O-acyltransferase (GNPAT) recapitulated the effects of Pex16 inactivation on mitochondrial morphology and function. Plasmalogens are present in mitochondria and decreased with Pex16 inactivation. Dietary supplementation with plasmalogens increased mitochondrial copy number, improved mitochondrial function, and rescued thermogenesis in Pex16-AKO mice. These findings support a surprising interaction between peroxisomes and mitochondria regulating mitochondrial dynamics and thermogenesis.

Authors

Hongsuk Park, Anyuan He, Min Tan, Jordan M. Johnson, John M. Dean, Terri A. Pietka, Yali Chen, Xiangyu Zhang, Fong-Fu Hsu, Babak Razani, Katsuhiko Funai, Irfan J. Lodhi

×

Abstract

Tumor cure with conventional fractionated radiotherapy is 65%, dependent on tumor cell–autonomous gradual buildup of DNA double-strand break (DSB) misrepair. Here we report that single-dose radiotherapy (SDRT), a disruptive technique that ablates more than 90% of human cancers, operates a distinct dual-target mechanism, linking acid sphingomyelinase–mediated (ASMase-mediated) microvascular perfusion defects to DNA unrepair in tumor cells to confer tumor cell lethality. ASMase-mediated microcirculatory vasoconstriction after SDRT conferred an ischemic stress response within parenchymal tumor cells, with ROS triggering the evolutionarily conserved SUMO stress response, specifically depleting chromatin-associated free SUMO3. Whereas SUMO3, but not SUMO2, was indispensable for homology-directed repair (HDR) of DSBs, HDR loss of function after SDRT yielded DSB unrepair, chromosomal aberrations, and tumor clonogen demise. Vasoconstriction blockade with the endothelin-1 inhibitor BQ-123, or ROS scavenging after SDRT using peroxiredoxin-6 overexpression or the SOD mimetic tempol, prevented chromatin SUMO3 depletion, HDR loss of function, and SDRT tumor ablation. We also provide evidence of mouse-to-human translation of this biology in a randomized clinical trial, showing that 24 Gy SDRT, but not 3×9 Gy fractionation, coupled early tumor ischemia/reperfusion to human cancer ablation. The SDRT biology provides opportunities for mechanism-based selective tumor radiosensitization via accessing of SDRT/ASMase signaling, as current studies indicate that this pathway is tractable to pharmacologic intervention.

Authors

Sahra Bodo, Cécile Campagne, Tin Htwe Thin, Daniel S. Higginson, H. Alberto Vargas, Guoqiang Hua, John D. Fuller, Ellen Ackerstaff, James Russell, Zhigang Zhang, Stefan Klingler, HyungJoon Cho, Matthew G. Kaag, Yousef Mazaheri, Andreas Rimner, Katia Manova-Todorova, Boris Epel, Joan Zatcky, Cristian R. Cleary, Shyam S. Rao, Yoshiya Yamada, Michael J. Zelefsky, Howard J. Halpern, Jason A. Koutcher, Carlos Cordon-Cardo, Carlo Greco, Adriana Haimovitz-Friedman, Evis Sala, Simon N. Powell, Richard Kolesnick, Zvi Fuks

×

Abstract

Abnormal alternative splicing (AS) caused by alterations to splicing factors contributes to tumor progression. Serine/arginine splicing factor 1 (SRSF1) has emerged as a key oncodriver in numerous solid tumors, leaving its roles and mechanisms largely obscure in glioma. Here, we demonstrate that SRSF1 is increased in glioma tissues and cell lines. Moreover, its expression was correlated positively with tumor grade and Ki-67 index, but inversely with patient survival. Using RNA-Seq, we comprehensively screened and identified multiple SRSF1-affected AS events. Motif analysis revealed a position-dependent modulation of AS by SRSF1 in glioma. Functionally, we verified that SRSF1 promoted cell proliferation, survival, and invasion by specifically switching the AS of the myosin IB (MYO1B) gene and facilitating the expression of the oncogenic and membrane-localized isoform, MYO1B-fl. Strikingly, MYO1B splicing was dysregulated in parallel with SRSF1 expression in gliomas and predicted the poor prognosis of the patients. Further investigation revealed that SRSF1-guided AS of the MYO1B gene increased the tumorigenic potential of glioma cells through the PDK1/AKT and PAK/LIMK pathways. Taken together, we identify SRSF1 as an important oncodriver that integrates AS control of MYO1B into promotion of gliomagenesis and represents a potential prognostic biomarker and target for glioma therapy.

Authors

Xuexia Zhou, Run Wang, Xuebing Li, Lin Yu, Dan Hua, Cuiyun Sun, Cuijuan Shi, Wenjun Luo, Chun Rao, Zhendong Jiang, Ying Feng, Qian Wang, Shizhu Yu

×

Abstract

Loss of phosphatase and tensin homolog (PTEN) represents one hallmark of prostate cancer (PCa). However, restoration of PTEN or inhibition of the activated PI3K/AKT pathway has shown limited success, prompting us to identify obligate targets for disease intervention. We hypothesized that PTEN loss might expose cells to unique epigenetic vulnerabilities. Here, we identified a synthetic lethal relationship between PTEN and Brahma-related gene 1 (BRG1), an ATPase subunit of the SWI/SNF chromatin remodeling complex. Higher BRG1 expression in tumors with low PTEN expression was associated with a worse clinical outcome. Genetically engineered mice (GEMs) and organoid assays confirmed that ablation of PTEN sensitized the cells to BRG1 depletion. Mechanistically, PTEN loss stabilized BRG1 protein through the inhibition of the AKT/GSK3β/FBXW7 axis. Increased BRG1 expression in PTEN-deficient PCa cells led to chromatin remodeling into configurations that drove a protumorigenic transcriptome, causing cells to become further addicted to BRG1. Furthermore, we showed in preclinical models that BRG1 antagonist selectively inhibited the progression of PTEN-deficient prostate tumors. Together, our results highlight the synthetic lethal relationship between PTEN and BRG1 and support targeting BRG1 as an effective approach to the treatment of PTEN-deficient PCa.

Authors

Yufeng Ding, Ni Li, Baijun Dong, Wangxin Guo, Hui Wei, Qilong Chen, Huairui Yuan, Ying Han, Hanwen Chang, Shan Kan, Xuege Wang, Qiang Pan, Ping Wu, Chao Peng, Tong Qiu, Qintong Li, Dong Gao, Wei Xue, Jun Qin

×

Abstract

The adenomatous polyposis coli (APC) gene plays a pivotal role in the pathogenesis of colorectal carcinoma (CRC) but remains a challenge for drug development. Long noncoding RNAs (lncRNAs) are invaluable in identifying cancer pathologies and providing therapeutic options for patients with cancer. Here, we identified a lncRNA (lncRNA-APC1) activated by APC through lncRNA microarray screening and examined its expression in a large cohort of CRC tissues. A decrease in lncRNA-APC1 expression was positively associated with lymph node and/or distant metastasis, a more advanced clinical stage, as well as a poor prognosis for patients with CRC. Additionally, APC could enhance lncRNA-APC1 expression by suppressing the enrichment of PPARα on the lncRNA-APC1 promoter. Furthermore, enforced lncRNA-APC1 expression was sufficient to inhibit CRC cell growth, metastasis, and tumor angiogenesis by suppressing exosome production through the direct binding of Rab5b mRNA and a reduction of its stability. Importantly, exosomes derived from lncRNA-APC1–silenced CRC cells promoted angiogenesis by activating the MAPK pathway in endothelial cells, and, moreover, exosomal Wnt1 largely enhanced CRC cell proliferation and migration through noncanonicial Wnt signaling. Collectively, lncRNA-APC1 is a critical lncRNA regulated by APC in the pathogenesis of CRC. Our findings suggest that an APC-regulated lncRNA-APC1 program is an exploitable therapeutic approach for the treatment of patients with CRC.

Authors

Feng-Wei Wang, Chen-Hui Cao, Kai Han, Yong-Xiang Zhao, Mu-Yan Cai, Zhi-Cheng Xiang, Jia-Xing Zhang, Jie-Wei Chen, Li-Ping Zhong, Yong Huang, Su-Fang Zhou, Xiao-Han Jin, Xin-Yuan Guan, Rui-Hua Xu, Dan Xie

×

Abstract

Goblet cell metaplasia, a disabling hallmark of chronic lung disease, lacks curative treatments at present. To identify novel therapeutic targets for goblet cell metaplasia, we studied the transcriptional response profile of IL-13–exposed primary human airway epithelia in vitro and asthmatic airway epithelia in vivo. A perturbation-response profile connectivity approach identified geldanamycin, an inhibitor of heat shock protein 90 (HSP90) as a candidate therapeutic target. Our experiments confirmed that geldanamycin and other HSP90 inhibitors prevented IL-13–induced goblet cell metaplasia in vitro and in vivo. Geldanamycin also reverted established goblet cell metaplasia. Geldanamycin did not induce goblet cell death, nor did it solely block mucin synthesis or IL-13 receptor–proximal signaling. Geldanamycin affected the transcriptome of airway cells when exposed to IL-13, but not when exposed to vehicle. We hypothesized that the mechanism of action probably involves TGF-β, ERBB, or EHF, which would predict that geldanamycin would also revert IL-17–induced goblet cell metaplasia, a prediction confirmed by our experiments. Our findings suggest that persistent airway goblet cell metaplasia requires HSP90 activity and that HSP90 inhibitors will revert goblet cell metaplasia, despite active upstream inflammatory signaling. Moreover, HSP90 inhibitors may be a therapeutic option for airway diseases with goblet cell metaplasia of an unknown mechanism of action.

Authors

Alejandro A. Pezzulo, Rosarie A. Tudas, Carley G. Stewart, Luis G. Vargas Buonfiglio, Brian D. Lindsay, Peter J. Taft, Nicholas D. Gansemer, Joseph Zabner

×

Abstract

The adenomatous polyposis coli (APC) gene plays, among other things, a crucial role in the regulation of cell proliferation and survival through its ability to regulate canonical Wnt signaling. In this issue of the JCI, Wang et al. provide an intriguing new mechanism for APC function involving the regulation of a novel long noncoding RNA (lncRNA), leading to changes in exosome production. APC signaling via this novel pathway can regulate cell proliferation and invasion as well as angiogenesis. In addition to enhancing our understanding of APC function, this new mechanism is of particular clinical significance, as it may provide additional targets for the treatment of APC-mutated cancers.

Authors

Pat J. Morin

×

Abstract

The most frequent subtype of acute myeloid leukemia (AML) is defined by mutations in the nucleophosmin 1 (NPM1) gene. Mutated NPM1 (ΔNPM1) is an attractive target for immunotherapy, since it is an essential driver gene and 4 bp frameshift insertions occur in the same hotspot in 30%–35% of AMLs, resulting in a C-terminal alternative reading frame of 11 aa. By searching the HLA class I ligandome of primary AMLs, we identified multiple ΔNPM1-derived peptides. For one of these peptides, HLA-A*02:01–binding CLAVEEVSL, we searched for specific T cells in healthy individuals using peptide-HLA tetramers. Tetramer-positive CD8+ T cells were isolated and analyzed for reactivity against primary AMLs. From one clone with superior antitumor reactivity, we isolated the T cell receptor (TCR) and demonstrated specific recognition and lysis of HLA-A*02:01–positive ΔNPM1 AML after retroviral transfer to CD8+ and CD4+ T cells. Antitumor efficacy of TCR-transduced T cells was confirmed in immunodeficient mice engrafted with a human AML cell line expressing ΔNPM1. In conclusion, the data show that ΔNPM1-derived peptides are presented on AML and that CLAVEEVSL is a neoantigen that can be efficiently targeted on AML by ΔNPM1 TCR gene transfer. Immunotherapy targeting ΔNPM1 may therefore contribute to treatment of AML.

Authors

Dyantha I. van der Lee, Rogier M. Reijmers, Maria W. Honders, Renate S. Hagedoorn, Rob C.M. de Jong, Michel G.D. Kester, Dirk M. van der Steen, Arnoud H. de Ru, Christiaan Kweekel, Helena M. Bijen, Inge Jedema, Hendrik Veelken, Peter A. van Veelen, Mirjam H.M. Heemskerk, J.H. Frederik Falkenburg, Marieke Griffioen

×

Abstract

Neoantigen-targeted therapies have typically been based upon personalized neoantigen-specific vaccines; however, in this issue of JCI, van der Lee et al. describe the development of a potential cellular immunotherapy targeting a “public” neoantigen derived from nucleophosmin 1 (NPM1), which is mutated in approximately 30% of acute myeloid leukemias (AMLs). The authors use reverse immunology to predict, and biochemically confirm, NPM1-derived neoepitopes (ΔNPM1) and then generate high-avidity T cell clones and retrovirally transduced T cell populations that kill NPM1-mutated AML. This study provides a general approach to adoptive cellular therapy that can be applied to targeting other tumors with public neoantigens.

Authors

Paul M. Armistead

×

Abstract

Neutrophil (PMN) infiltration of the intestinal mucosa is a hallmark of tissue injury associated with inflammatory bowel diseases (IBDs). The pathological effects of PMNs are largely attributed to the release of soluble mediators and reactive oxygen species (ROS). We identified what we believe is a new, ROS-independent mechanism whereby activated tissue-infiltrating PMNs release microparticles armed with proinflammatory microRNAs (miR-23a and miR-155). Using IBD clinical samples, and in vitro and in vivo injury models, we show that PMN-derived miR-23a and miR-155 promote accumulation of double-strand breaks (DSBs) by inducing lamin B1–dependent replication fork collapse and inhibition of homologous recombination (HR) by targeting HR-regulator RAD51. DSB accumulation in injured epithelium led to impaired colonic healing and genomic instability. Targeted inhibition of miR-23a and miR-155 in cultured intestinal epithelial cells and in acutely injured mucosa decreased the detrimental effects of PMNs and enhanced tissue healing responses, suggesting that this approach can be used in therapies aimed at resolution of inflammation, in wound healing, and potentially to prevent neoplasia.

Authors

Veronika Butin-Israeli, Triet M. Bui, Hannah L. Wiesolek, Lorraine Mascarenhas, Joseph J. Lee, Lindsey C. Mehl, Kaitlyn R. Knutson, Stephen A. Adam, Robert D. Goldman, Arthur Beyder, Lisa Wiesmuller, Stephen B. Hanauer, Ronen Sumagin

×

Abstract

A predominant feature of intestinal inflammation is the accumulation of neutrophils, which dictates a fine balance between epithelial repair or progression to chronic inflammation. While the processes of mucosal healing are well studied, how neutrophils advance an inflammatory insult towards epithelial neoplasia is less understood. In this issue of the JCI, Butin-Israeli et al. outline a mechanism whereby neutrophils control epithelial fitness and genomic instability via delivery of miR-23a–and miR-155–containing microparticles. Localized delivery of antisense oligonucleotides targeting miR-23a and miR-155 reversed this genomic instability and accelerated mucosal healing. This mechanism of neutrophil-derived microRNA shuttling opens up new therapeutic potential to enhance epithelial healing and limit mucosal injury.

Authors

Eóin N. McNamee

×

Abstract

Macrophages perform key functions in tissue homeostasis that are influenced by the local tissue environment. Within the tumor microenvironment, tumor-associated macrophages can be altered to acquire properties that enhance tumor growth. Here, we found that lactate, a metabolite found in high concentration within the anaerobic tumor environment, activated mTORC1 that subsequently suppressed TFEB-mediated expression of the macrophage-specific vacuolar ATPase subunit ATP6V0d2. Atp6v0d2–/– mice were more susceptible to tumor growth, with enhanced HIF-2α–mediated VEGF production in macrophages that display a more protumoral phenotype. We found that ATP6V0d2 targeted HIF-2α but not HIF-1α for lysosome-mediated degradation. Blockade of HIF-2α transcriptional activity reversed the susceptibility of Atp6v0d2–/– mice to tumor development. Furthermore, in a cohort of patients with lung adenocarcinoma, expression of ATP6V0d2 and HIF-2α was positively and negatively correlated with survival, respectively, suggesting a critical role of the macrophage lactate/ATP6V0d2/HIF-2α axis in maintaining tumor growth in human patients. Together, our results highlight the ability of tumor cells to modify the function of tumor-infiltrating macrophages to optimize the microenvironment for tumor growth.

Authors

Na Liu, Jing Luo, Dong Kuang, Sanpeng Xu, Yaqi Duan, Yu Xia, Zhengping Wei, Xiuxiu Xie, Bingjiao Yin, Fang Chen, Shunqun Luo, Huicheng Liu, Jing Wang, Kan Jiang, Feili Gong, Zhao-hui Tang, Xiang Cheng, Huabin Li, Zhuoya Li, Arian Laurence, Guoping Wang, Xiang-Ping Yang

×

Abstract

Immune checkpoint therapies have shown tremendous promise in cancer therapy. However, tools to assess their target engagement, and hence the ability to predict their efficacy, have been lacking. Here, we show that target engagement and tumor-residence kinetics of antibody therapeutics targeting programmed death ligand-1 (PD-L1) can be quantified noninvasively. In computational docking studies, we observed that PD-L1–targeted monoclonal antibodies (atezolizumab, avelumab, and durvalumab) and a high-affinity PD-L1–binding peptide, WL12, have common interaction sites on PD-L1. Using the peptide radiotracer [64Cu]WL12 in vivo, we employed positron emission tomography (PET) imaging and biodistribution studies in multiple xenograft models and demonstrated that variable PD-L1 expression and its saturation by atezolizumab, avelumab, and durvalumab can be quantified independently of biophysical properties and pharmacokinetics of antibodies. Next, we used [64Cu]WL12 to evaluate the impact of time and dose on the unoccupied fraction of tumor PD-L1 during treatment. These quantitative measures enabled, by mathematical modeling, prediction of antibody doses needed to achieve therapeutically effective occupancy (defined as >90%). Thus, we show that peptide-based PET is a promising tool for optimizing dose and therapeutic regimens employing PD-L1 checkpoint antibodies, and can be used for improving therapeutic efficacy.

Authors

Dhiraj Kumar, Ala Lisok, Elyes Dahmane, Matthew McCoy, Sagar Shelake, Samit Chatterjee, Viola Allaj, Polina Sysa-Shah, Bryan Wharram, Wojciech G. Lesniak, Ellen Tully, Edward Gabrielson, Elizabeth M. Jaffee, John T. Poirier, Charles M. Rudin, Jogarao V.S. Gobburu, Martin G. Pomper, Sridhar Nimmagadda

×

Abstract

Ca2+ channel β-subunit interactions with pore-forming α-subunits are long-thought to be obligatory for channel trafficking to the cell surface and for tuning of basal biophysical properties in many tissues. Unexpectedly, we demonstrate that transgenic expression of mutant α1C subunits lacking capacity to bind CaVβ can traffic to the sarcolemma in adult cardiomyocytes in vivo and sustain normal excitation-contraction coupling. However, these β-less Ca2+ channels cannot be stimulated by β-adrenergic pathway agonists, and thus adrenergic augmentation of contractility is markedly impaired in isolated cardiomyocytes and in hearts. Similarly, viral-mediated expression of a β-subunit–sequestering peptide sharply curtailed β-adrenergic stimulation of WT Ca2+ channels, identifying an approach to specifically modulate β-adrenergic regulation of cardiac contractility. Our data demonstrate that β subunits are required for β-adrenergic regulation of CaV1.2 channels and positive inotropy in the heart, but are dispensable for CaV1.2 trafficking to the adult cardiomyocyte cell surface, and for basal function and excitation-contraction coupling.

Authors

Lin Yang, Alexander Katchman, Jared Kushner, Alexander Kushnir, Sergey I. Zakharov, Bi-xing Chen, Zunaira Shuja, Prakash Subramanyam, Guoxia Liu, Arianne Papa, Daniel Roybal, Geoffrey S. Pitt, Henry M. Colecraft, Steven O. Marx

×

Abstract

The tumor suppressor phosphatase and tensin homolog (PTEN) classically counteracts the PI3K/AKT/mTOR signaling cascade. Germline pathogenic PTEN mutations cause PTEN hamartoma tumor syndrome (PHTS), featuring various benign and malignant tumors, as well as neurodevelopmental disorders such as autism spectrum disorder. Germline and somatic mosaic mutations in genes encoding components of the PI3K/AKT/mTOR pathway downstream of PTEN predispose to syndromes with partially overlapping clinical features, termed the “PTEN-opathies.” Experimental models of PTEN pathway disruption uncover the molecular and cellular processes influencing clinical phenotypic manifestations. Such insights not only teach us about biological mechanisms in states of health and disease, but also enable more accurate gene-informed cancer risk assessment, medical management, and targeted therapeutics. Hence, the PTEN-opathies serve as a prototype for bedside to bench, and back to the bedside, practice of evidence-based precision medicine.

Authors

Lamis Yehia, Joanne Ngeow, Charis Eng

×

Abstract

The field of hereditary kidney cancer has begun to mature following the identification of several germline syndromes that define genetic and molecular features of this cancer. Molecular defects within these hereditary syndromes demonstrate consistent deficits in angiogenesis and metabolic signaling, largely driven by altered hypoxia signaling. The classical mutation, loss of function of the von Hippel-Lindau (VHL) tumor suppressor, provides a human pathogenesis model for critical aspects of pseudohypoxia. These features are mimicked in a less common hereditary renal tumor syndrome, known as hereditary leiomyomatosis and renal cell carcinoma. Here, we review renal tumor angiogenesis and metabolism from a HIF-centric perspective, considering alterations in the hypoxic landscape, and molecular deviations resulting from high levels of HIF family members. Mutations underlying HIF deregulation drive multifactorial aberrations in angiogenic signals and metabolism. The mechanisms by which these defects drive tumor growth are still emerging. However, the distinctive patterns of angiogenesis and glycolysis-/glutamine-dependent bioenergetics provide insight into the cellular environment of these cancers. The result is a scenario permissive for aggressive tumorigenesis especially within the proximal renal tubule. These features of tumorigenesis have been highly actionable in kidney cancer treatments, and will likely continue as central tenets of kidney cancer therapeutics.

Authors

John C. Chappell, Laura Beth Payne, W. Kimryn Rathmell

×

Abstract

The aortic root is the predominant site for development of aneurysm caused by heterozygous loss-of-function mutations in positive effectors of the transforming growth factor-β (TGF-β) pathway. Using a mouse model of Loeys-Dietz syndrome (LDS) that carries a heterozygous kinase-inactivating mutation in TGF-β receptor I, we found that the effects of this mutation depend on the lineage of origin of vascular smooth muscle cells (VSMCs). Secondary heart field–derived (SHF-derived), but not neighboring cardiac neural crest–derived (CNC-derived), VSMCs showed impaired Smad2/3 activation in response to TGF-β, increased expression of angiotensin II (AngII) type 1 receptor (Agtr1a), enhanced responsiveness to AngII, and higher expression of TGF-β ligands. The preserved TGF-β signaling potential in CNC-derived VSMCs associated, in vivo, with increased Smad2/3 phosphorylation. CNC-, but not SHF-specific, deletion of Smad2 preserved aortic wall architecture and reduced aortic dilation in this mouse model of LDS. Taken together, these data suggest that aortic root aneurysm predisposition in this LDS mouse model depends both on defective Smad signaling in SHF-derived VSMCs and excessive Smad signaling in CNC-derived VSMCs. This work highlights the importance of considering the regional microenvironment and specifically lineage-dependent variation in the vulnerability to mutations in the development and testing of pathogenic models for aortic aneurysm.

Authors

Elena Gallo MacFarlane, Sarah J. Parker, Joseph Y. Shin, Shira G. Ziegler, Tyler J. Creamer, Rustam Bagirzadeh, Djahida Bedja, Yichun Chen, Juan F. Calderon, Katherine Weissler, Pamela A. Frischmeyer-Guerrerio, Mark E. Lindsay, Jennifer P. Habashi, Harry C. Dietz

×

Abstract

Authors

Mark W. Dewhirst, Yvonne M. Mowery, James B. Mitchell, Murali K. Cherukuri, Timothy W. Secomb

×

Abstract

Stressful situations provoke the fight-or-flight response, incurring rapid elevation of cardiac output via activation of protein kinase A (PKA). In this issue of the JCI, Yang et al. focus on the L-type calcium channel complex (LTCC), and their findings require reexamination of dogmatic principles. LTCC phosphorylation sites identified and studied to date are dispensable for PKA modulation of LTCC; however, a CaVβ2-CaV1.2 calcium channel interaction is now shown to be required. Yang et al. suggest a new hypothesis that LTCC modulation involves rearrangement of auxiliary proteins within the LTCC. However, we still do not know the targets of PKA that mediate LTCC modulation.

Authors

Brooke M. Ahern, Jonathan Satin

×

Abstract

The JCI has made all of its research freely available to readers since 1996. As open access mandates from funders, such as Plan S, gain momentum, it’s worth revisiting how the JCI has created a durable publication model for free access to research and the benefits that society journals provide to the research community.

Authors

Sarah Jackson

×

In-Press Preview - More

Abstract

The cytoplasmic aggregation of TDP-43 is a hallmark of degenerating neurons in amyotrophic lateral sclerosis (ALS) and subsets of frontotemporal dementia (FTD). In order to reduce TDP-43 pathology, we have generated single chain (scFv) antibodies against the RNA recognition motif 1 (RRM1) of TDP-43 which is involved in abnormal protein self-aggregation and interaction with p65 nuclear factor kappa B (NFKB). Viral-mediated delivery into the nervous system of a scFv antibody, named VH7Vk9, reduced microgliosis in a mouse model of acute neuroinflammation and it mitigated cognitive impairment, motor defects, TDP-43 proteinopathy and neuroinflammation in transgenic mice expressing ALS-linked TDP-43 mutations. These results suggest that antibodies targeting the RRM1 domain of TDP-43 might provide new therapeutic avenues for treatment of ALS and FTD.

Authors

Silvia Pozzi, Sai Sampath Thammisetty, Philippe Codron, Reza Rahimian, Karine V. Plourde, Geneviève Soucy, Christine Bareil, Daniel Phaneuf, Jasna Kriz, Claude Gravel, Jean-Pierre Julien

×

Abstract

In the stomach, chronic inflammation causes metaplasia and creates a favorable environment for the evolution of gastric cancer. Glucocorticoids are steroid hormones that repress proinflammatory stimuli but their role in the stomach is unknown. In this study, we show that endogenous glucocorticoids are required to maintain gastric homeostasis. Removal of circulating glucocorticoids in mice by adrenalectomy resulted in the rapid onset of spontaneous gastric inflammation, oxyntic atrophy, and spasmolytic polypeptide-expressing metaplasia (SPEM), a precursor of gastric cancer. SPEM and oxyntic atrophy occurred independently of lymphocytes. However, depletion of monocytes and macrophages by clodronate treatment or inhibition of gastric monocyte infiltration using the Cx3cr1 knockout mouse model prevented SPEM development. Our results highlight the requirement for endogenous glucocorticoid signaling within the stomach to prevent spontaneous gastric inflammation and metaplasia and suggest that glucocorticoid deficiency may lead to gastric cancer development.

Authors

Jonathan T. Busada, Sivapriya Ramamoorthy, Derek W. Cain, Xiaojiang Xu, Donald N. Cook, John A. Cidlowski

×

Abstract

We used the cancer intrinsic property of oncogene-induced DNA damage as the base for a conditional synthetic lethality approach. To target mechanisms important for cancer cell adaptation to genotoxic stress and thereby to achieve cancer cell-specific killing, we combined inhibition of the kinases ATR and Wee1. Wee1 regulates cell cycle progression, whereas ATR is an apical kinase in the DNA damage response. In an orthotopic breast cancer model, tumor-selective synthetic lethality between bioavailable ATR and Wee1 inhibitors led to tumor remission and inhibited metastasis with minimal side effects. ATR and Wee1 inhibition had a higher synergistic effect in cancer stem cells than in bulk cancer cells, compensating for the lower sensitivity of cancer stem cells to the individual drugs. Mechanistically, the combination treatment caused cells with unrepaired or under-replicated DNA to enter mitosis leading to mitotic catastrophe. As these inhibitors of ATR and Wee1 are already in phase I/II clinical trials, this knowledge could soon be translated into the clinic, especially as we showed that the combination treatment targets a wide range of tumor cells. Particularly the anti-metastatic effect of combined Wee1/ATR inhibition and the low toxicity of ATR inhibitors compared to Chk1 inhibitors has great clinical potential.

Authors

Amirali B. Bukhari, Cody W. Lewis, Joanna J. Pearce, Deandra Luong, Gordon K. Chan, Armin M. Gamper

×

Abstract

Background/Purpose: Plasmacytoid dendritic cells (pDC) produce large amounts of type I IFN (IFN-I), cytokines convincingly linked to systemic lupus erythematosus (SLE) pathogenesis. BIIB059 is a humanized mAb that binds BDCA2, a pDC-specific receptor that inhibits the production of IFN-I and other inflammatory mediators when ligated. A first-in-human study was conducted to assess safety, tolerability, pharmacokinetic (PK) and pharmacodynamic (PD) effects of single BIIB059 doses in healthy volunteers (HV) and patients with SLE with active cutaneous disease as well as proof of biological activity and preliminary clinical response in the SLE cohort. Methods: A randomized, double-blind, placebo-controlled, clinical trial was conducted in HV (n=54) and patients with SLE (n=12). All subjects were monitored for adverse events. Serum BIIB059 concentrations, BDCA2 levels on pDCs, and IFN-responsive biomarkers in whole blood and skin biopsies were measured. Skin disease activity was determined using the Cutaneous Lupus Erythematosus Disease Area and Severity Index Activity (CLASI-A).Results: Single doses of BIIB059 were associated with a favorable safety and PK profile. BIIB059 administration led to BDCA2 internalization on pDCs, which correlated with circulating BIIB059 levels. BIIB059 administration in patients with SLE decreased expression of IFN response genes in blood, normalized MxA expression and reduced immune infiltrates in skin lesions, and decreased CLASI-A score. Conclusion: Single doses of BIIB059 were associated with favorable safety and PK/PD profiles, and robust target engagement and biological activity, supporting further development of BIIB059 in SLE. The data suggest that targeting pDCs may be beneficial for patients with SLE, especially those with cutaneous manifestations.

Authors

Richard Furie, Victoria P. Werth, Joseph F. Merola, Lauren Stevenson, Taylor L. Reynolds, Himanshu Naik, Wenting Wang, Romy Christmann, Agnes Gardet, Alex Pellerin, Stefan Hamann, Pavan Auluck, Catherine Barbey, Parul Gulati, Dania Rabah, Nathalie Franchimont

×

Abstract

Upon arterial injury, endothelial denudation leads to platelet activation, and delivery of multiple agents (e.g. TXA2, PDGF) promoting VSMC dedifferentiation, and proliferation, in injury repair (intimal hyperplasia). Resolution of vessel injury repair, and prevention of excessive repair (switching VSMC back to a differentiated quiescent state) is a poorly understood process. We now report that internalization of activated platelets by VSMCs promotes resolution of arterial injury by switching on VSMC quiescence. Ex vivo and in vivo studies using lineage tracing reporter mice (PF4-Cre x mTmG) demonstrated uptake of green platelets by red vascular smooth muscle cells upon arterial wire injury. Genome-wide miRNA sequencing of VSMCs co-cultured with activated platelets identified significant increases in platelet-derived miR-223. miR-223 appears to directly target PDGFRβ (in VSMCs) reversing the injury-induced dedifferentiation. Upon arterial injury platelet miR-223 knockout mice exhibit increased intimal hyperplasia, whereas miR-223 mimics reduced intimal hyperplasia. Diabetic mice with reduced expression of miR-223, exhibited enhanced VSMC dedifferentiation, proliferation, and increased intimal hyperplasia. Horizontal transfer of platelet-derived miRNAs into VSMCs provide a novel mechanism for regulating VSMC phenotypic switching. Platelets thus play a dual role in vascular injury repair, initiating an immediate repair process, and concurrently, a delayed process to prevent excessive repair.

Authors

Zhi Zeng, Luoxing Xia, Xuejiao Fan, Allison C. Ostriker, Timur Yarovinsky, Meiling Su, Yuan Zhang, Xiangwen Peng, Xie Yi, Lei Pi, Xiaoqiong Gu, Sookja Kim Chung, Kathleen A. Martin, Renjing Liu, John Hwa, Wai Ho Tang

×

Advertisement

January 2019

129 1 cover

January 2019 Issue

On the cover:
Transferred T cells confer control over myeloma

In this issue of the JCI, Vuckovic et al. reveal that myeloma-experienced T cells facilitate myeloma control following bone marrow transfer. Graft-derived cytokines also influenced posttransplant myeloma progression and control. These insights into the cellular and molecular immune mediators of autologous SCT’s effects provide avenues to improve therapeutic outcomes in multiple myeloma. The cover image illustrates the interaction of T cells with myeloma in the bone marrow environment. Image credit: Madeleine Kersting Flynn, QIMR Berghofer.

×
Jci tm 01

January 2019 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Mitochondrial dysfunction in disease

Series edited by Michael Sack

Mitochondria transform nutrients and oxygen into chemical energy that powers a multitude of cellular functions. While mitochondrial aerobic glycolysis generates the majority of a cell’s ATP, its byproducts also have wide-ranging influences on cellular health and longevity. This review series, edited by Dr. Michael Sack, focuses on the many contributions of mitochondria to disease and aging. The reviews highlight evidence linking altered mitochondrial metabolism and oxidative stress to a range of pathophysiological phenomena: inflammation and immune dysfunction, heart failure, cancer development, metabolic disease, and more. In many diseases and conditions, mitochondrial dysfunction is considered the tipping point toward pathological progression. However, as these reviews discuss, therapeutic targeting of mitochondria may be a powerful strategy to subvert disease and aging processes.

×